BRAF activation induces transformation and then senescence in human neural stem cells: a pilocytic astrocytoma model.
نویسندگان
چکیده
PURPOSE BRAF is frequently activated by gene fusion or point mutation in pilocytic astrocytoma, the most common pediatric brain tumor. We investigated the functional effect of constitutive BRAF activation in normal human neural stem and progenitor cells to determine its role in tumor induction in the brain. EXPERIMENTAL DESIGN The constitutively active BRAF(V600E) allele was introduced into human neurospheres, and its effects on MAPK (mitogen-activated protein kinase) signaling, proliferation, soft agarose colony formation, stem cell phenotype, and induction of cellular senescence were assayed. Immunohistochemistry was used to examine p16(INK4a) levels in pilocytic astrocytoma. RESULTS BRAF(V600E) expression initially strongly promoted colony formation but did not lead to significantly increased proliferation. BRAF(V600E)-expressing cells subsequently stopped proliferating and induced markers of oncogene-induced senescence including acidic β-galactosidase, PAI-1, and p16(INK4a) whereas controls did not. Onset of senescence was associated with decreased expression of neural stem cell markers including SOX2. Primary pilocytic astrocytoma cultures also showed induction of acidic β-galactosidase activity. Immunohistochemical examination of 66 pilocytic astrocytomas revealed p16(INK4a) immunoreactivity in the majority of cases, but patients with tumors negative for p16(INK4a) had significantly shorter overall survival. CONCLUSIONS BRAF activation in human neural stem and progenitor cells initially promotes clonogenic growth in soft agarose, suggesting partial cellular transformation, but oncogene-induced senescence subsequently limits proliferation. Induction of senescence by BRAF may help explain the low-grade pathobiology of pilocytic astrocytoma, whereas worse clinical outcomes associated with tumors lacking p16(INK4a) expression could reflect failure to induce senescence or an escape from oncogene-induced senescence.
منابع مشابه
Human Cancer Biology BRAF Activation Induces Transformation and Then Senescence in Human Neural Stem Cells: A Pilocytic Astrocytoma Model
Purpose: BRAF is frequently activated by gene fusion or point mutation in pilocytic astrocytoma, the most common pediatric brain tumor. We investigated the functional effect of constitutive BRAF activation in normal human neural stem and progenitor cells to determine its role in tumor induction in the brain. Experimental Design: The constitutively active BRAF allele was introduced into human ne...
متن کاملAstrocytoma Model Senescence in Human Neural Stem Cells: A Pilocytic BRAF Activation Induces Transformation and Then
Purpose: BRAF is frequently activated by gene fusion or point mutation in pilocytic astrocytoma, the most common pediatric brain tumor. We investigated the functional effect of constitutive BRAF activation in normal human neural stem and progenitor cells to determine its role in tumor induction in the brain. Experimental Design: The constitutively active BRAF allele was introduced into human ne...
متن کاملAn activated mutant BRAF kinase domain is sufficient to induce pilocytic astrocytoma in mice.
Pilocytic astrocytoma (PA) is the most common type of primary brain tumor in children and the second most frequent cancer in childhood. Children with incompletely resected PA represent a clinically challenging patient cohort for whom conventional adjuvant therapies are only moderately effective. This has produced high clinical demand for testing of new molecularly targeted treatments. However, ...
متن کاملConditional KIAA1549:BRAF mice reveal brain region- and cell type-specific effects.
Low-grade brain tumors (pilocytic astrocytomas) that result from a genomic rearrangement in which the BRAF kinase domain is fused to the amino terminal of the KIAA1549 gene (KIAA1549:BRAF fusion; f-BRAF) commonly arise in the cerebellum of young children. To model this temporal and spatial specificity in mice, we generated conditional KIAA1549:BRAF strains that coexpresses green fluorescent pro...
متن کاملEstablishment and application of a novel patient-derived KIAA1549:BRAF-driven pediatric pilocytic astrocytoma model for preclinical drug testing
Pilocytic astrocytoma (PA) is the most frequent pediatric brain tumor. Activation of the MAPK pathway is well established as the oncogenic driver of the disease. It is most frequently caused by KIAA1549:BRAF fusions, and leads to oncogene induced senescence (OIS). OIS is thought to be a major reason for growth arrest of PA cells in vitro and in vivo, preventing establishment of PA cultures. Hen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 17 11 شماره
صفحات -
تاریخ انتشار 2011